If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-2a-40=0
a = 1; b = -2; c = -40;
Δ = b2-4ac
Δ = -22-4·1·(-40)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{41}}{2*1}=\frac{2-2\sqrt{41}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{41}}{2*1}=\frac{2+2\sqrt{41}}{2} $
| (11x-12)+(4x+1)2=180 | | 8z+13=8z | | a^2-4a-40=0 | | 125m-100m+38,200=40,200-175m | | 11x-12=(4x+1)2 | | 2(y=2)-6y | | 4(x+5=x+5=80x) | | 2t-(-10)=180 | | 34+109+x=180 | | 30=-40-5y | | -2(4+4n)+7=-25+4n | | 21b=21b | | 1/3x-2=1/6x+9 | | 13+4a+2a=3a+2 | | 3x-15+1=7 | | 67+76+x=180 | | -2x+14=-2(x+1)+10 | | -7x-5=47 | | 75=500(5)t | | 7b-6b=8(b+2)-5(b+6) | | 0.85x+1400-0.25x=900 | | 6+3(1+2x)=5x+5 | | 3x+x÷2-2=180 | | -1.5y=3y+4.5 | | 51+70+x=180 | | 18-4x-8=4x+2 | | T^2+3t+5=45 | | 2x+x÷2-2+x=180 | | 0.85x+14000-0.25x=900 | | 7(x-3)+42=7x+21 | | 3x+3+4x=7x-5 | | 18-2/3(4x-12)=4x+2 |